# 2.4. CGO内存模型(Doing) CGO是架接Go语言和C语言的桥梁,它不仅仅在二进制接口层面实现互通,同时要考虑两种语言的内存模型的差异。如果在CGO处理的跨语言函数调用时涉及指针的传递,则可能会出现Go语言和C语言共享某一段内存的场景。我们知道C语言的内存在分配之后就是稳定的,但是Go语言因为函数栈的动态伸缩可能导致栈中内存地址的移动。如果C语言持有的是移动之前的Go指针,那么以旧指针访问Go对象时会导致程序崩溃。这是Go和C内存模型的最大差异。 ## Go访问C内存 在Go语言访问C语言内存是最简单的情形,我们在之前的例子中已经见过多次。因此C语言空间的内存是稳定的,只要不是被人为提前释放,那么在Go语言空间可以放心大胆地使用。 因为Go语言实现的现在,我们无法在Go语言中创建大于2GB内存的切片(具体请参考makeslice实现代码)。不过借助cgo技术,我们可以在C语言环境创建大于2GB的内存,然后转为Go语言的切片使用: ```go package main /* #include void* makeslice(size_t memsize) { return malloc(memsize); } */ import "C" import "unsafe" func makeByteSlize(n int) []byte { p := C.makeslice(C.size_t(n)) return ((*[1 << 31]byte)(p))[0:n:n] } func freeByteSlice(p []byte) { C.free(unsafe.Pointer(&p[0])) } func main() { s := makeByteSlize(1<<32+1) s[len[s]-1] = 1234 print(s[len[s]-1]) freeByteSlice(p) } ``` 例子中我们通过makeByteSlize来创建大于4G内存大小的切片,从而绕过了Go语言实现的限制(需要代码验证)。而freeByteSlice辅助函数用于释放从C语言函数创建的切片。 因为C语言内存空间是稳定的,基于C语言内存构造的切片也是绝对稳定的,不会因为Go语言栈的变化而被移动。 ## C临时访问传入的Go内存 ## C长期持有Go指针对象 TODO