mirror of
https://github.com/ehang-io/nps.git
synced 2025-09-06 07:06:53 +00:00
Ip限制 npc代理连接
This commit is contained in:
311
vender/github.com/xtaci/kcp/fec.go
Normal file
311
vender/github.com/xtaci/kcp/fec.go
Normal file
@@ -0,0 +1,311 @@
|
||||
package kcp
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"sync/atomic"
|
||||
|
||||
"github.com/klauspost/reedsolomon"
|
||||
)
|
||||
|
||||
const (
|
||||
fecHeaderSize = 6
|
||||
fecHeaderSizePlus2 = fecHeaderSize + 2 // plus 2B data size
|
||||
typeData = 0xf1
|
||||
typeFEC = 0xf2
|
||||
)
|
||||
|
||||
type (
|
||||
// fecPacket is a decoded FEC packet
|
||||
fecPacket struct {
|
||||
seqid uint32
|
||||
flag uint16
|
||||
data []byte
|
||||
}
|
||||
|
||||
// fecDecoder for decoding incoming packets
|
||||
fecDecoder struct {
|
||||
rxlimit int // queue size limit
|
||||
dataShards int
|
||||
parityShards int
|
||||
shardSize int
|
||||
rx []fecPacket // ordered receive queue
|
||||
|
||||
// caches
|
||||
decodeCache [][]byte
|
||||
flagCache []bool
|
||||
|
||||
// zeros
|
||||
zeros []byte
|
||||
|
||||
// RS decoder
|
||||
codec reedsolomon.Encoder
|
||||
}
|
||||
)
|
||||
|
||||
func newFECDecoder(rxlimit, dataShards, parityShards int) *fecDecoder {
|
||||
if dataShards <= 0 || parityShards <= 0 {
|
||||
return nil
|
||||
}
|
||||
if rxlimit < dataShards+parityShards {
|
||||
return nil
|
||||
}
|
||||
|
||||
dec := new(fecDecoder)
|
||||
dec.rxlimit = rxlimit
|
||||
dec.dataShards = dataShards
|
||||
dec.parityShards = parityShards
|
||||
dec.shardSize = dataShards + parityShards
|
||||
codec, err := reedsolomon.New(dataShards, parityShards)
|
||||
if err != nil {
|
||||
return nil
|
||||
}
|
||||
dec.codec = codec
|
||||
dec.decodeCache = make([][]byte, dec.shardSize)
|
||||
dec.flagCache = make([]bool, dec.shardSize)
|
||||
dec.zeros = make([]byte, mtuLimit)
|
||||
return dec
|
||||
}
|
||||
|
||||
// decodeBytes a fec packet
|
||||
func (dec *fecDecoder) decodeBytes(data []byte) fecPacket {
|
||||
var pkt fecPacket
|
||||
pkt.seqid = binary.LittleEndian.Uint32(data)
|
||||
pkt.flag = binary.LittleEndian.Uint16(data[4:])
|
||||
// allocate memory & copy
|
||||
buf := xmitBuf.Get().([]byte)[:len(data)-6]
|
||||
copy(buf, data[6:])
|
||||
pkt.data = buf
|
||||
return pkt
|
||||
}
|
||||
|
||||
// decode a fec packet
|
||||
func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
|
||||
// insertion
|
||||
n := len(dec.rx) - 1
|
||||
insertIdx := 0
|
||||
for i := n; i >= 0; i-- {
|
||||
if pkt.seqid == dec.rx[i].seqid { // de-duplicate
|
||||
xmitBuf.Put(pkt.data)
|
||||
return nil
|
||||
} else if _itimediff(pkt.seqid, dec.rx[i].seqid) > 0 { // insertion
|
||||
insertIdx = i + 1
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// insert into ordered rx queue
|
||||
if insertIdx == n+1 {
|
||||
dec.rx = append(dec.rx, pkt)
|
||||
} else {
|
||||
dec.rx = append(dec.rx, fecPacket{})
|
||||
copy(dec.rx[insertIdx+1:], dec.rx[insertIdx:]) // shift right
|
||||
dec.rx[insertIdx] = pkt
|
||||
}
|
||||
|
||||
// shard range for current packet
|
||||
shardBegin := pkt.seqid - pkt.seqid%uint32(dec.shardSize)
|
||||
shardEnd := shardBegin + uint32(dec.shardSize) - 1
|
||||
|
||||
// max search range in ordered queue for current shard
|
||||
searchBegin := insertIdx - int(pkt.seqid%uint32(dec.shardSize))
|
||||
if searchBegin < 0 {
|
||||
searchBegin = 0
|
||||
}
|
||||
searchEnd := searchBegin + dec.shardSize - 1
|
||||
if searchEnd >= len(dec.rx) {
|
||||
searchEnd = len(dec.rx) - 1
|
||||
}
|
||||
|
||||
// re-construct datashards
|
||||
if searchEnd-searchBegin+1 >= dec.dataShards {
|
||||
var numshard, numDataShard, first, maxlen int
|
||||
|
||||
// zero caches
|
||||
shards := dec.decodeCache
|
||||
shardsflag := dec.flagCache
|
||||
for k := range dec.decodeCache {
|
||||
shards[k] = nil
|
||||
shardsflag[k] = false
|
||||
}
|
||||
|
||||
// shard assembly
|
||||
for i := searchBegin; i <= searchEnd; i++ {
|
||||
seqid := dec.rx[i].seqid
|
||||
if _itimediff(seqid, shardEnd) > 0 {
|
||||
break
|
||||
} else if _itimediff(seqid, shardBegin) >= 0 {
|
||||
shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data
|
||||
shardsflag[seqid%uint32(dec.shardSize)] = true
|
||||
numshard++
|
||||
if dec.rx[i].flag == typeData {
|
||||
numDataShard++
|
||||
}
|
||||
if numshard == 1 {
|
||||
first = i
|
||||
}
|
||||
if len(dec.rx[i].data) > maxlen {
|
||||
maxlen = len(dec.rx[i].data)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if numDataShard == dec.dataShards {
|
||||
// case 1: no loss on data shards
|
||||
dec.rx = dec.freeRange(first, numshard, dec.rx)
|
||||
} else if numshard >= dec.dataShards {
|
||||
// case 2: loss on data shards, but it's recoverable from parity shards
|
||||
for k := range shards {
|
||||
if shards[k] != nil {
|
||||
dlen := len(shards[k])
|
||||
shards[k] = shards[k][:maxlen]
|
||||
copy(shards[k][dlen:], dec.zeros)
|
||||
}
|
||||
}
|
||||
if err := dec.codec.ReconstructData(shards); err == nil {
|
||||
for k := range shards[:dec.dataShards] {
|
||||
if !shardsflag[k] {
|
||||
recovered = append(recovered, shards[k])
|
||||
}
|
||||
}
|
||||
}
|
||||
dec.rx = dec.freeRange(first, numshard, dec.rx)
|
||||
}
|
||||
}
|
||||
|
||||
// keep rxlimit
|
||||
if len(dec.rx) > dec.rxlimit {
|
||||
if dec.rx[0].flag == typeData { // track the unrecoverable data
|
||||
atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
|
||||
}
|
||||
dec.rx = dec.freeRange(0, 1, dec.rx)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// free a range of fecPacket, and zero for GC recycling
|
||||
func (dec *fecDecoder) freeRange(first, n int, q []fecPacket) []fecPacket {
|
||||
for i := first; i < first+n; i++ { // recycle buffer
|
||||
xmitBuf.Put(q[i].data)
|
||||
}
|
||||
copy(q[first:], q[first+n:])
|
||||
for i := 0; i < n; i++ { // dereference data
|
||||
q[len(q)-1-i].data = nil
|
||||
}
|
||||
return q[:len(q)-n]
|
||||
}
|
||||
|
||||
type (
|
||||
// fecEncoder for encoding outgoing packets
|
||||
fecEncoder struct {
|
||||
dataShards int
|
||||
parityShards int
|
||||
shardSize int
|
||||
paws uint32 // Protect Against Wrapped Sequence numbers
|
||||
next uint32 // next seqid
|
||||
|
||||
shardCount int // count the number of datashards collected
|
||||
maxSize int // track maximum data length in datashard
|
||||
|
||||
headerOffset int // FEC header offset
|
||||
payloadOffset int // FEC payload offset
|
||||
|
||||
// caches
|
||||
shardCache [][]byte
|
||||
encodeCache [][]byte
|
||||
|
||||
// zeros
|
||||
zeros []byte
|
||||
|
||||
// RS encoder
|
||||
codec reedsolomon.Encoder
|
||||
}
|
||||
)
|
||||
|
||||
func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
|
||||
if dataShards <= 0 || parityShards <= 0 {
|
||||
return nil
|
||||
}
|
||||
enc := new(fecEncoder)
|
||||
enc.dataShards = dataShards
|
||||
enc.parityShards = parityShards
|
||||
enc.shardSize = dataShards + parityShards
|
||||
enc.paws = (0xffffffff/uint32(enc.shardSize) - 1) * uint32(enc.shardSize)
|
||||
enc.headerOffset = offset
|
||||
enc.payloadOffset = enc.headerOffset + fecHeaderSize
|
||||
|
||||
codec, err := reedsolomon.New(dataShards, parityShards)
|
||||
if err != nil {
|
||||
return nil
|
||||
}
|
||||
enc.codec = codec
|
||||
|
||||
// caches
|
||||
enc.encodeCache = make([][]byte, enc.shardSize)
|
||||
enc.shardCache = make([][]byte, enc.shardSize)
|
||||
for k := range enc.shardCache {
|
||||
enc.shardCache[k] = make([]byte, mtuLimit)
|
||||
}
|
||||
enc.zeros = make([]byte, mtuLimit)
|
||||
return enc
|
||||
}
|
||||
|
||||
// encodes the packet, outputs parity shards if we have collected quorum datashards
|
||||
// notice: the contents of 'ps' will be re-written in successive calling
|
||||
func (enc *fecEncoder) encode(b []byte) (ps [][]byte) {
|
||||
enc.markData(b[enc.headerOffset:])
|
||||
binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))
|
||||
|
||||
// copy data to fec datashards
|
||||
sz := len(b)
|
||||
enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
|
||||
copy(enc.shardCache[enc.shardCount], b)
|
||||
enc.shardCount++
|
||||
|
||||
// track max datashard length
|
||||
if sz > enc.maxSize {
|
||||
enc.maxSize = sz
|
||||
}
|
||||
|
||||
// Generation of Reed-Solomon Erasure Code
|
||||
if enc.shardCount == enc.dataShards {
|
||||
// fill '0' into the tail of each datashard
|
||||
for i := 0; i < enc.dataShards; i++ {
|
||||
shard := enc.shardCache[i]
|
||||
slen := len(shard)
|
||||
copy(shard[slen:enc.maxSize], enc.zeros)
|
||||
}
|
||||
|
||||
// construct equal-sized slice with stripped header
|
||||
cache := enc.encodeCache
|
||||
for k := range cache {
|
||||
cache[k] = enc.shardCache[k][enc.payloadOffset:enc.maxSize]
|
||||
}
|
||||
|
||||
// encoding
|
||||
if err := enc.codec.Encode(cache); err == nil {
|
||||
ps = enc.shardCache[enc.dataShards:]
|
||||
for k := range ps {
|
||||
enc.markFEC(ps[k][enc.headerOffset:])
|
||||
ps[k] = ps[k][:enc.maxSize]
|
||||
}
|
||||
}
|
||||
|
||||
// counters resetting
|
||||
enc.shardCount = 0
|
||||
enc.maxSize = 0
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (enc *fecEncoder) markData(data []byte) {
|
||||
binary.LittleEndian.PutUint32(data, enc.next)
|
||||
binary.LittleEndian.PutUint16(data[4:], typeData)
|
||||
enc.next++
|
||||
}
|
||||
|
||||
func (enc *fecEncoder) markFEC(data []byte) {
|
||||
binary.LittleEndian.PutUint32(data, enc.next)
|
||||
binary.LittleEndian.PutUint16(data[4:], typeFEC)
|
||||
enc.next = (enc.next + 1) % enc.paws
|
||||
}
|
Reference in New Issue
Block a user