7.7 KiB
3.6. 再论函数(Doing)
在前面的章节中我们已经简单讨论过Go的汇编函数,但是那些主要是叶子函数。叶子函数的最大特点是不会调用其他函数,也就是栈的大小是可以预期的,叶子函数也就是可以基本忽略爆栈的问题(如果已经爆了,那也是上级函数的问题)。如果没有爆栈问题,那么也就是不会有栈的分裂问题;如果没有栈的分裂也就不需要移动栈上的指针,也就不会有栈上指针管理的问题。但是是现实中Go语言的函数是可以任意深度调用的,永远不用担心爆栈的风险。那么这些近似黑科技的特殊是如何通过低级的汇编语言实现的呢?这些都是本节尝试讨论的问题。
递归函数: 1到n求和
递归函数是比较特殊的函数,递归函数通过调用自身并且在栈上保存状态,这可以简化很多问题的处理。Go语言中递归函数的强大之处是不用担心爆栈问题,因为栈可以根据需要进行扩容和收缩。我们现在尝试通过汇编语言实现一个递归调用的函数,为了简化目前先不考虑栈的变化。
先通过Go递归函数实现一个1到n的求和函数:
// sum = 1+2+...+n
// sum(100) = 5050
func sum(n int) int {
if n > 0 { return n+sum(n-1) } else { return 0 }
}
然后通过if/goto构型重新上面的递归函数,以便于转义为汇编版本:
func sum(n int) (result int) {
var AX = n
var BX int
if n > 0 { goto L_STEP_TO_END }
goto L_END
L_STEP_TO_END:
AX -= 1
BX = sum(AX)
AX = n // 调用函数后, AX重新恢复为n
BX += AX
return BX
L_END:
return 0
}
在改写之后,递归调用的参数需要引入局部变量,保存中间结果也需要引入局部变量。而通过栈来保存中间的调用状态正是递归函数的核心。因为输入参数也在栈上,因为我们可以通过输入参数来保存少量的状态。同时我们模拟定义了AX和BX寄存器,寄存器在使用前需要初始化,并且在函数调用后也需要重新初始化。
下面继续改造为汇编语言版本:
// func sum(n int) (result int)
TEXT ·sum(SB), NOSPLIT, $16-16
MOVQ n+0(FP), AX // n
MOVQ result+8(FP), BX // result
CMPQ AX, $0 // test n - 0
JG L_STEP_TO_END // if > 0: goto L_STEP_TO_END
JMP L_END // goto L_STEP_TO_END
L_STEP_TO_END:
SUBQ $1, AX // AX -= 1
MOVQ AX, 0(SP) // arg: n-1
CALL ·sum(SB) // call sum(n-1)
MOVQ 8(SP), BX // BX = sum(n-1)
MOVQ n+0(FP), AX // AX = n
ADDQ AX, BX // BX += AX
MOVQ BX, result+8(FP) // return BX
RET
L_END:
MOVQ $0, result+8(FP) // return 0
RET
在汇编版本函数中并没有定义局部变量,只有用于调用自身的临时栈空间。因为函数本身的参数和返回值有16个字节,因此栈帧的大小也为16字节。L_STEP_TO_END标号部分用于处理递归调用,是函数比较复杂的部分。L_END用于处理递归终结的部分。
调用sum函数的参数在0(SP)
位置,调用结束后的返回值在8(SP)
位置。在函数调用之后要需要重新为需要的寄存器注入值,因为被调用的函数内部很可能会破坏了寄存器的状态。同时调用函数的参数值也可信任的,输入参数也可能在被调用函数内部被修改了值。
总得来说用汇编实现递归函数和普通函数并没有什么区别,当然是在没有考虑爆栈的前提下。我们的函数应该可以对较小的n进行求和,但是当n大到一定层度,也就是栈达到一定的深度,必然会出现爆栈的问题。爆栈是C语言的特性,不应该在哪怕是Go汇编语言中出现。
栈的扩容和收缩
Go语言的编译器在生成函数的机器代码时,会在开头插入以小段代码。插入的代码可以做很多事情,包括触发runtime.Gosched进行协作式调度,还包括栈的动态增长等。其实栈等扩容工作主要在runtime包的runtime·morestack_noctxt函数实现,这是一个底层函数,只有汇编层面才可以调用。
在新版本的sum汇编函数中,我们在开头和末尾都引入了部分代码:
// func sum(n int) int
TEXT ·sum(SB), $16-16
NO_LOCAL_POINTERS
L_START:
MOVQ TLS, CX
MOVQ 0(CX)(TLS*1), AX
CMPQ SP, 16(AX)
JLS L_MORE_STK
// 原来的代码
L_MORE_STK:
CALL runtime·morestack_noctxt(SB)
JMP L_START
其中NO_LOCAL_POINTERS表示没有局部指针。因为新引入的代码可能导致调用runtime·morestack_noctxt函数,而栈的扩容必然要涉及函数参数和局部编指针的调整,如果缺少局部指针信息将导致扩容工作无法进行。不仅仅是栈的扩容需要函数的参数和局部指针标记表格,在GC进行垃圾回收时也将需要。函数的参数和返回值的指针状态可以通过在Go语言中的函数声明中获取,函数的局部变量则需要手工指定。因为手工指定指针表格是一个非常繁琐的工作,因此一般要避免在手写汇编中出现局部指针。
喜欢深究的读者可能会有一个问题:如果进行垃圾回收或栈调整时,寄存器中的指针时如何维护的?前文说过,Go语言的函数调用时通过栈进行传递参数的,并没有使用寄存器传递参数。同时函数调用之后所有的寄存器视为失效。因此在调整和维护指针时,只需要扫描内存中的指针数据,寄存器中的数据在垃圾回收器函数返回后都需要重新加载,因此寄存器是不需要扫描的。
在Go语言的Goroutine实现中,每个TlS线程局部变量会保存当前Goroutine的信息结构体的指针。通过MOVQ TLS, CX
和MOVQ 0(CX)(TLS*1), AX
两条指令将表示当前Goroutine信息的g结构体加载到CX寄存器。g结构体在$GOROOT/src/runtime/runtime2.go
文件定义,开头的结构成员如下:
type g struct {
// Stack parameters.
// stack describes the actual stack memory: [stack.lo, stack.hi).
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
// stackguard1 is the stack pointer compared in the C stack growth prologue.
// It is stack.lo+StackGuard on g0 and gsignal stacks.
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
stack stack // offset known to runtime/cgo
stackguard0 uintptr // offset known to liblink
stackguard1 uintptr // offset known to liblink
...
}
第一个成员是stack类型,表示当前栈的开始和结束地址。stack的定义如下:
// Stack describes a Go execution stack.
// The bounds of the stack are exactly [lo, hi),
// with no implicit data structures on either side.
type stack struct {
lo uintptr
hi uintptr
}
在g结构体中的stackguard0成员是出现爆栈前的警戒线。stackguard0的偏移量是16个字节,因此上述代码中的CMPQ SP, 16(AX)
表示将当前的真实SP和爆栈警戒线比较,如果超出警戒线则表示需要进行栈扩容,也就是跳转到L_MORE_STK。在L_MORE_STK标号处,线调用runtime·morestack_noctxt进行栈扩容,然后又跳回到函数到开始位置,此时此刻函数到栈已经调整了。然后再进行一次栈大小到检测,如果依然不足则继续扩容,直到栈足够大为止。
以上是栈的扩容,但是栈到收缩是在何时处理到呢?我们知道Go运行时会定期进行垃圾回收操作,这其中栈的回收工作。如果栈使用到比例小于一定到阈值,则分配一个较小到栈空间,然后将栈上面到数据移动到新的栈中,栈移动的过程和栈扩容的过程类似。
PCDATA和PCDATA
TODO
方法函数
TODO