4.5 KiB
5.6. Ratelimit 服务流量限制
计算机程序可依据其瓶颈分为 IO-bound,或 CPU-bound,我们这里先刨除掉存储类系统。web 系统打交道最多的实际上就是网络,从 linux 引入了 epoll 的 API 之后,我们可以借助其轻松解决当年的 C10k 问题,实现一个简单的 echo 服务器。随着编程语言的发展,很多编程语言对这些系统调用又进一步进行了封装,所以做应用层开发,压根儿不会在程序中看到 epoll 之类的字眼,大多数时候我们就只要聚焦中业务逻辑上就好,不用管底层是用的 epoll 还是 kqueue。时至今日,C10k 都已经很少被人所提起,我们写一个简单的 hello world
程序:
package main
import (
"io"
"log"
"net/http"
)
func sayhello(wr http.ResponseWriter, r *http.Request) {
wr.WriteHeader(200)
io.WriteString(wr, "hello world")
}
func main() {
http.HandleFunc("/", sayhello)
err := http.ListenAndServe(":9090", nil)
if err != nil {
log.Fatal("ListenAndServe:", err)
}
}
并借助 wrk,在家用电脑 Macbook Pro 上对其进行基准测试,Mac 的硬件情况如下:
CPU: Intel(R) Core(TM) i5-5257U CPU @ 2.70GHz
Core: 2
Threads: 4
Graphics/Displays:
Chipset Model: Intel Iris Graphics 6100
Resolution: 2560 x 1600 Retina
Memory Slots:
Size: 4 GB
Speed: 1867 MHz
Size: 4 GB
Speed: 1867 MHz
Storage:
Size: 250.14 GB (250,140,319,744 bytes)
Media Name: APPLE SSD SM0256G Media
Size: 250.14 GB (250,140,319,744 bytes)
Medium Type: SSD
测试结果:
~ ❯❯❯ wrk -c 10 -d 10s -t10 http://localhost:9090
Running 10s test @ http://localhost:9090
10 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 339.99us 1.28ms 44.43ms 98.29%
Req/Sec 4.49k 656.81 7.47k 73.36%
449588 requests in 10.10s, 54.88MB read
Requests/sec: 44513.22
Transfer/sec: 5.43MB
~ ❯❯❯ wrk -c 10 -d 10s -t10 http://localhost:9090
Running 10s test @ http://localhost:9090
10 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 334.76us 1.21ms 45.47ms 98.27%
Req/Sec 4.42k 633.62 6.90k 71.16%
443582 requests in 10.10s, 54.15MB read
Requests/sec: 43911.68
Transfer/sec: 5.36MB
~ ❯❯❯ wrk -c 10 -d 10s -t10 http://localhost:9090
Running 10s test @ http://localhost:9090
10 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 379.26us 1.34ms 44.28ms 97.62%
Req/Sec 4.55k 591.64 8.20k 76.37%
455710 requests in 10.10s, 55.63MB read
Requests/sec: 45118.57
Transfer/sec: 5.51MB
多次测试的结果在 4w 左右的 QPS浮动,响应时间最多也就是 40ms 左右,对于一个 web 程序来说,这已经是很不错的成绩了。这还只是家用 PC,线上服务器大多都是 24 核心起,32G 内存+,CPU 基本都是 Intel I7。所以同样的程序在服务器上运行会得到更好的结果。
真实环境的程序要比我们这里的 hello world
复杂得多,有些程序偏 IO bound,例如一些 proxy 服务、存储服务、缓存服务;有些程序偏 CPU/GPU bound,例如登陆校验服务、图像处理服务。不同的程序瓶颈会体现在不同的地方,这里提到的这些功能单一的服务相对来说还算容易分析。如果碰到业务逻辑复杂代码量巨大的模块,其瓶颈并不是三下五除二可以推测出来的,还是需要我们拿真实的环境来进行压力测试。
对于 IO bound 类的程序,其表现是网卡/磁盘 IO 会先于 CPU 打满,这种情况即使优化 CPU 的使用也不能提高整个系统的吞吐量,可能只能提高磁盘的读写速度,增加内容大小,或者提升网卡的带宽。而 CPU bound 类的程序,则是在存储和网卡未打满之前 CPU 占用率提前到达 100%。
无论哪种类型的服务,在资源使用到尽头的时候等待着用户的都是请求堆积,超时,系统 hang 死,而最终伤害到终端用户。对于 web 服务来说,瓶颈不一定总是在系统内部,也有可能在外部。非计算密集型的系统往往会在关系型数据库环节失守,而这时候 web 模块本身还远远未达到瓶颈。
先来看一个计算密集型服务的例子:
再来看一个 IO bound 服务的例子:
再来看一个外部存储系统瓶颈导致瓶颈的例子: