mirror of
https://github.com/chai2010/advanced-go-programming-book.git
synced 2025-05-24 12:32:21 +00:00
391 lines
13 KiB
Markdown
391 lines
13 KiB
Markdown
# 3.9 Delve调试器
|
||
|
||
目前Go语言支持GDB、LLDB和Delve几种调试器。其中GDB是最早支持的调试工具,LLDB是macOS系统推荐的标准调试工具。但是GDB和LLDB对Go语言的专有特性都缺乏很大支持,而只有Delve是专门为Go语言设计开发的调试工具。而且Delve本身也是采用Go语言开发,对Windows平台也提供了一样的支持。本节我们基于Delve简单解释如何调试Go汇编程序。
|
||
|
||
## 3.9.1 Delve入门
|
||
|
||
首先根据官方的文档正确安装Delve调试器。我们会先构造一个简单的Go语言代码,用于熟悉下Delve的简单用法。
|
||
|
||
创建main.go文件,main函数先通过循初始化一个切片,然后输出切片的内容:
|
||
|
||
```go
|
||
package main
|
||
|
||
import (
|
||
"fmt"
|
||
)
|
||
|
||
func main() {
|
||
nums := make([]int, 5)
|
||
for i := 0; i < len(nums); i++ {
|
||
nums[i] = i * i
|
||
}
|
||
fmt.Println(nums)
|
||
}
|
||
```
|
||
|
||
命令行进入包所在目录,然后输入`dlv debug`命令进入调试:
|
||
|
||
```
|
||
$ dlv debug
|
||
Type 'help' for list of commands.
|
||
(dlv)
|
||
```
|
||
|
||
输入help命令可以查看到Delve提供的调试命令列表:
|
||
|
||
```
|
||
(dlv) help
|
||
The following commands are available:
|
||
args ------------------------ Print function arguments.
|
||
break (alias: b) ------------ Sets a breakpoint.
|
||
breakpoints (alias: bp) ----- Print out info for active breakpoints.
|
||
clear ----------------------- Deletes breakpoint.
|
||
clearall -------------------- Deletes multiple breakpoints.
|
||
condition (alias: cond) ----- Set breakpoint condition.
|
||
config ---------------------- Changes configuration parameters.
|
||
continue (alias: c) --------- Run until breakpoint or program termination.
|
||
disassemble (alias: disass) - Disassembler.
|
||
down ------------------------ Move the current frame down.
|
||
exit (alias: quit | q) ------ Exit the debugger.
|
||
frame ----------------------- Set the current frame, or execute command...
|
||
funcs ----------------------- Print list of functions.
|
||
goroutine ------------------- Shows or changes current goroutine
|
||
goroutines ------------------ List program goroutines.
|
||
help (alias: h) ------------- Prints the help message.
|
||
list (alias: ls | l) -------- Show source code.
|
||
locals ---------------------- Print local variables.
|
||
next (alias: n) ------------- Step over to next source line.
|
||
on -------------------------- Executes a command when a breakpoint is hit.
|
||
print (alias: p) ------------ Evaluate an expression.
|
||
regs ------------------------ Print contents of CPU registers.
|
||
restart (alias: r) ---------- Restart process.
|
||
set ------------------------- Changes the value of a variable.
|
||
source ---------------------- Executes a file containing a list of delve...
|
||
sources --------------------- Print list of source files.
|
||
stack (alias: bt) ----------- Print stack trace.
|
||
step (alias: s) ------------- Single step through program.
|
||
step-instruction (alias: si) Single step a single cpu instruction.
|
||
stepout --------------------- Step out of the current function.
|
||
thread (alias: tr) ---------- Switch to the specified thread.
|
||
threads --------------------- Print out info for every traced thread.
|
||
trace (alias: t) ------------ Set tracepoint.
|
||
types ----------------------- Print list of types
|
||
up -------------------------- Move the current frame up.
|
||
vars ------------------------ Print package variables.
|
||
whatis ---------------------- Prints type of an expression.
|
||
Type help followed by a command for full documentation.
|
||
(dlv)
|
||
```
|
||
|
||
每个Go程序的入口是main.main函数,我们可以用break在此设置一个断点:
|
||
|
||
```
|
||
(dlv) break main.main
|
||
Breakpoint 1 set at 0x10ae9b8 for main.main() ./main.go:7
|
||
```
|
||
|
||
然后通过breakpoints查看已经设置的所有断点:
|
||
|
||
```
|
||
(dlv) breakpoints
|
||
Breakpoint unrecovered-panic at 0x102a380 for runtime.startpanic()
|
||
/usr/local/go/src/runtime/panic.go:588 (0)
|
||
print runtime.curg._panic.arg
|
||
Breakpoint 1 at 0x10ae9b8 for main.main() ./main.go:7 (0)
|
||
```
|
||
|
||
我们发现除了我们自己设置的main.main函数断点外,Delve内部已经为panic异常函数设置了一个断点。
|
||
|
||
通过vars命令可以查看全部包级的变量。因为最终的目标程序可能含有大量的全局变量,我们可以通过一个正则参数选择想查看的全局变量:
|
||
|
||
```
|
||
(dlv) vars main
|
||
main.initdone· = 2
|
||
runtime.main_init_done = chan bool 0/0
|
||
runtime.mainStarted = true
|
||
(dlv)
|
||
```
|
||
|
||
然后就可以通过continue命令让程序运行到下一个断点处:
|
||
|
||
```
|
||
(dlv) continue
|
||
> main.main() ./main.go:7 (hits goroutine(1):1 total:1) (PC: 0x10ae9b8)
|
||
2:
|
||
3: import (
|
||
4: "fmt"
|
||
5: )
|
||
6:
|
||
=> 7: func main() {
|
||
8: nums := make([]int, 5)
|
||
9: for i := 0; i < len(nums); i++ {
|
||
10: nums[i] = i * i
|
||
11: }
|
||
12: fmt.Println(nums)
|
||
(dlv)
|
||
```
|
||
|
||
输入next命令单步执行进入main函数内部:
|
||
|
||
```
|
||
(dlv) next
|
||
> main.main() ./main.go:8 (PC: 0x10ae9cf)
|
||
3: import (
|
||
4: "fmt"
|
||
5: )
|
||
6:
|
||
7: func main() {
|
||
=> 8: nums := make([]int, 5)
|
||
9: for i := 0; i < len(nums); i++ {
|
||
10: nums[i] = i * i
|
||
11: }
|
||
12: fmt.Println(nums)
|
||
13: }
|
||
(dlv)
|
||
```
|
||
|
||
进入函数之后可以通过args和locals命令查看函数的参数和局部变量:
|
||
|
||
```
|
||
(dlv) args
|
||
(no args)
|
||
(dlv) locals
|
||
nums = []int len: 842350763880, cap: 17491881, nil
|
||
```
|
||
|
||
因为main函数没有参数,因此args命令没有任何输出。而locals命令则输出了局部变量nums切片的值:此时切片还未完成初始化,切片的底层指针为nil,长度和容量都是一个随机数值。
|
||
|
||
再次输入next命令单步执行后就可以查看到nums切片初始化之后的结果了:
|
||
|
||
```
|
||
(dlv) next
|
||
> main.main() ./main.go:9 (PC: 0x10aea12)
|
||
4: "fmt"
|
||
5: )
|
||
6:
|
||
7: func main() {
|
||
8: nums := make([]int, 5)
|
||
=> 9: for i := 0; i < len(nums); i++ {
|
||
10: nums[i] = i * i
|
||
11: }
|
||
12: fmt.Println(nums)
|
||
13: }
|
||
(dlv) locals
|
||
nums = []int len: 5, cap: 5, [...]
|
||
i = 17601536
|
||
(dlv)
|
||
```
|
||
|
||
此时因为调试器已经到了for语句行,因此局部变量出现了还未初始化的循环迭代变量i。
|
||
|
||
下面我们通过组合使用break和condition命令,在循环内部设置一个条件断点,当循环变量i等于3时断点生效:
|
||
|
||
```
|
||
(dlv) break main.go:10
|
||
Breakpoint 2 set at 0x10aea33 for main.main() ./main.go:10
|
||
(dlv) condition 2 i==3
|
||
(dlv)
|
||
```
|
||
|
||
然后通过continue执行到刚设置的条件断点,并且输出局部变量:
|
||
|
||
```
|
||
(dlv) continue
|
||
> main.main() ./main.go:10 (hits goroutine(1):1 total:1) (PC: 0x10aea33)
|
||
5: )
|
||
6:
|
||
7: func main() {
|
||
8: nums := make([]int, 5)
|
||
9: for i := 0; i < len(nums); i++ {
|
||
=> 10: nums[i] = i * i
|
||
11: }
|
||
12: fmt.Println(nums)
|
||
13: }
|
||
(dlv) locals
|
||
nums = []int len: 5, cap: 5, [...]
|
||
i = 3
|
||
(dlv) print nums
|
||
[]int len: 5, cap: 5, [0,1,4,0,0]
|
||
(dlv)
|
||
```
|
||
|
||
我们发现当循环变量i等于3时,nums切片的前3个元素已经正确初始化。
|
||
|
||
我们还可以通过stack查看当前执行函数的栈帧信息:
|
||
|
||
```
|
||
(dlv) stack
|
||
0 0x00000000010aea33 in main.main
|
||
at ./main.go:10
|
||
1 0x000000000102bd60 in runtime.main
|
||
at /usr/local/go/src/runtime/proc.go:198
|
||
2 0x0000000001053bd1 in runtime.goexit
|
||
at /usr/local/go/src/runtime/asm_amd64.s:2361
|
||
(dlv)
|
||
```
|
||
|
||
或者通过goroutine和goroutines命令查看当前Goroutine相关的信息:
|
||
|
||
```
|
||
(dlv) goroutine
|
||
Thread 101686 at ./main.go:10
|
||
Goroutine 1:
|
||
Runtime: ./main.go:10 main.main (0x10aea33)
|
||
User: ./main.go:10 main.main (0x10aea33)
|
||
Go: /usr/local/go/src/runtime/asm_amd64.s:258 runtime.rt0_go (0x1051643)
|
||
Start: /usr/local/go/src/runtime/proc.go:109 runtime.main (0x102bb90)
|
||
(dlv) goroutines
|
||
[4 goroutines]
|
||
* Goroutine 1 - User: ./main.go:10 main.main (0x10aea33) (thread 101686)
|
||
Goroutine 2 - User: /usr/local/go/src/runtime/proc.go:292 \
|
||
runtime.gopark (0x102c189)
|
||
Goroutine 3 - User: /usr/local/go/src/runtime/proc.go:292 \
|
||
runtime.gopark (0x102c189)
|
||
Goroutine 4 - User: /usr/local/go/src/runtime/proc.go:292 \
|
||
runtime.gopark (0x102c189)
|
||
(dlv)
|
||
```
|
||
|
||
最后完成调试工作后输入quit命令退出调试器。至此我们已经掌握了Delve调试器器的简单用法。
|
||
|
||
## 3.9.2 调试汇编程序
|
||
|
||
用Delve调试Go汇编程序的过程比调试Go语言程序更加简单。调试汇编程序时,我们需要时刻关注寄存器的状态,如果涉及函数调用或局部变量或参数还需要重点关注栈寄存器SP的状态。
|
||
|
||
为了编译演示,我们重新实现一个更简单的main函数:
|
||
|
||
```go
|
||
package main
|
||
|
||
func main() { asmSayHello() }
|
||
|
||
func asmSayHello()
|
||
```
|
||
|
||
在main函数中调用汇编语言实现的asmSayHello函数输出一个字符串。
|
||
|
||
asmSayHello函数在main_amd64.s文件中实现:
|
||
|
||
```
|
||
#include "textflag.h"
|
||
#include "funcdata.h"
|
||
|
||
// "Hello World!\n"
|
||
DATA text<>+0(SB)/8,$"Hello Wo"
|
||
DATA text<>+8(SB)/8,$"rld!\n"
|
||
GLOBL text<>(SB),NOPTR,$16
|
||
|
||
// func asmSayHello()
|
||
TEXT ·asmSayHello(SB), $16-0
|
||
NO_LOCAL_POINTERS
|
||
MOVQ $text<>+0(SB), AX
|
||
MOVQ AX, (SP)
|
||
MOVQ $16, 8(SP)
|
||
CALL runtime·printstring(SB)
|
||
RET
|
||
```
|
||
|
||
参考前面的调试流程,在执行到main函数断点时,可以disassemble反汇编命令查看main函数对应的汇编代码:
|
||
|
||
```
|
||
(dlv) break main.main
|
||
Breakpoint 1 set at 0x105011f for main.main() ./main.go:3
|
||
(dlv) continue
|
||
> main.main() ./main.go:3 (hits goroutine(1):1 total:1) (PC: 0x105011f)
|
||
1: package main
|
||
2:
|
||
=>3: func main() { asmSayHello() }
|
||
4:
|
||
5: func asmSayHello()
|
||
(dlv) disassemble
|
||
TEXT main.main(SB) /path/to/pkg/main.go
|
||
main.go:3 0x1050110 65488b0c25a0080000 mov rcx, qword ptr g [0x8a0]
|
||
main.go:3 0x1050119 483b6110 cmp rsp, qword ptr [r +0x10]
|
||
main.go:3 0x105011d 761a jbe 0x1050139
|
||
=>main.go:3 0x105011f* 4883ec08 sub rsp, 0x8
|
||
main.go:3 0x1050123 48892c24 mov qword ptr [rsp], rbp
|
||
main.go:3 0x1050127 488d2c24 lea rbp, ptr [rsp]
|
||
main.go:3 0x105012b e880000000 call $main.asmSayHello
|
||
main.go:3 0x1050130 488b2c24 mov rbp, qword ptr [rsp]
|
||
main.go:3 0x1050134 4883c408 add rsp, 0x8
|
||
main.go:3 0x1050138 c3 ret
|
||
main.go:3 0x1050139 e87288ffff call $runtime.morestack_noctxt
|
||
main.go:3 0x105013e ebd0 jmp $main.main
|
||
(dlv)
|
||
```
|
||
|
||
虽然main函数内部只有一行函数调用语句,但是却生成了很多汇编指令。在函数的开头通过比较rsp寄存器判断栈空间是否不足,如果不足则跳转到0x1050139地址调用runtime.morestack函数进行栈扩容,然后跳回到main函数开始位置重新进行栈空间测试。而在asmSayHello函数调用之前,先扩展rsp空间用于临时存储rbp寄存器的状态,在函数返回后通过栈恢复rbp的值并回收临时栈空间。通过对比Go语言代码和对应的汇编代码,我们可以加深对Go汇编语言的理解。
|
||
|
||
从汇编语言角度深刻Go语言各种特性的工作机制对调试工作也是一个很大的帮助。如果希望在汇编指令层面调试Go代码,Delve还提供了一个step-instruction单步执行汇编指令的命令。
|
||
|
||
现在我们依然用break命令在asmSayHello函数设置断点,并且输入continue命令让调试器执行到断点位置停下:
|
||
|
||
```
|
||
(dlv) break main.asmSayHello
|
||
Breakpoint 2 set at 0x10501bf for main.asmSayHello() ./main_amd64.s:10
|
||
(dlv) continue
|
||
> main.asmSayHello() ./main_amd64.s:10 (hits goroutine(1):1 total:1) (PC: 0x10501bf)
|
||
5: DATA text<>+0(SB)/8,$"Hello Wo"
|
||
6: DATA text<>+8(SB)/8,$"rld!\n"
|
||
7: GLOBL text<>(SB),NOPTR,$16
|
||
8:
|
||
9: // func asmSayHello()
|
||
=> 10: TEXT ·asmSayHello(SB), $16-0
|
||
11: NO_LOCAL_POINTERS
|
||
12: MOVQ $text<>+0(SB), AX
|
||
13: MOVQ AX, (SP)
|
||
14: MOVQ $16, 8(SP)
|
||
15: CALL runtime·printstring(SB)
|
||
(dlv)
|
||
```
|
||
|
||
此时我们可以通过regs查看全部的寄存器状态:
|
||
|
||
```
|
||
(dlv) regs
|
||
rax = 0x0000000001050110
|
||
rbx = 0x0000000000000000
|
||
rcx = 0x000000c420000300
|
||
rdx = 0x0000000001070be0
|
||
rdi = 0x000000c42007c020
|
||
rsi = 0x0000000000000001
|
||
rbp = 0x000000c420049f78
|
||
rsp = 0x000000c420049f70
|
||
r8 = 0x7fffffffffffffff
|
||
r9 = 0xffffffffffffffff
|
||
r10 = 0x0000000000000100
|
||
r11 = 0x0000000000000286
|
||
r12 = 0x000000c41fffff7c
|
||
r13 = 0x0000000000000000
|
||
r14 = 0x0000000000000178
|
||
r15 = 0x0000000000000004
|
||
rip = 0x00000000010501bf
|
||
rflags = 0x0000000000000206
|
||
...
|
||
(dlv)
|
||
```
|
||
|
||
因为AMD64的各种寄存器非常多,项目的信息中刻意省略了非通用的寄存器。如果再单步执行到13行时,可以发现AX寄存器值的变化。
|
||
|
||
```
|
||
(dlv) regs
|
||
rax = 0x00000000010a4060
|
||
rbx = 0x0000000000000000
|
||
rcx = 0x000000c420000300
|
||
...
|
||
(dlv)
|
||
```
|
||
|
||
因此我们可以推断汇编程序内部定义的`text<>`数据的地址为0x00000000010a4060。我们可以用过print命令来查看该内存内的数据:
|
||
|
||
```
|
||
(dlv) print *(*[5]byte)(uintptr(0x00000000010a4060))
|
||
[5]uint8 [72,101,108,108,111]
|
||
(dlv)
|
||
```
|
||
|
||
我们可以发现输出的`[5]uint8 [72,101,108,108,111]`刚好是对应“Hello”字符串。通过类似的方法,我们可以通过查看SP对应的栈指针位置,然后查看栈中局部变量的值。
|
||
|
||
至此我们就掌握了Go汇编程序的简单调试技术。
|